摘要
重冰区同塔双回输电设计是解决重覆冰地区输电走廊资源日益匮乏难题的重要方法,但由于同塔双回导、地线覆冰和脱冰的复杂性,国内外关于此方面的研究十分匮乏。以国内某重冰区500 kV输电工程首次采用的同塔双回耐张塔SJB4261为例,分析了重冰区同塔双回塔型的选择。结合铁塔真型试验,基于大量有限元数值计算全面对比分析了铁塔的变形及应力规律。计算表明,由于螺栓滑移效应的影响,数值分析的铁塔位移值均小于实测值,采用梁-杆单元模型能够较好地反映主材应力规律。试验铁塔成功完成预定工况的真型试验,表明重冰区应用同塔双回铁塔是可行的。
Abstract
The design of double-circuit power transmission line is an important solution for the problem that the power transmission corridors are becoming increasingly scarce in the heavy icing area. But due to the complexity of ice-covering and ice-dropping of conductor and ground wire in double-circuit transmission lines, the relative research is quite deficient at home and abroad. Taking SJB4261 strain tower of double-circuit transmission line which was firstly adopted in a 500 kV transmission project in heavy icing area as an example, the tower type selection for double-circuit transmission line was analyzed in heavy icing area. Deformation and stress rules of tower were comprehensively analyzed based on tower's full-scale tests and lots of finite element numerical calculations. The calculation results show that all the displacements of tower in numerical analysis are smaller than those in actual measurements due to the influence of bolt slip effect, and beam-bar unit model is able to better reflect the stress rule of main materials. The full-scale tests of tower are successfully completed under predetermined condition, which demonstrates that the strain tower of double-circuit transmission line is feasible in heavy icing area.
关键词
耐张塔 /
重冰区 /
同塔双回 /
试验 /
有限元
Key words
strain tower /
heavy icing area /
double-circuit power transmission line /
test /
finite element
韩大刚,刘洪昌,冯勇,李美峰,肖兵,肖洪伟,杨洋.
500 kV重冰区同塔双回耐张塔设计及试验研究[J]. 电力建设. 2013, 34(8): 56-63 https://doi.org/10.3969/j.issn.1000-7229.2013.08. 011
HAN Dagang, LIU Hongchang, FENG Yong, LI Meifeng, XIAO Bing, XIAO Hongwei, YANG Yang.
Design and Test of Strain Tower for 500 kV Double-Circuit Power Transmission Line in Heavy Icing Area[J]. Electric Power Construction. 2013, 34(8): 56-63 https://doi.org/10.3969/j.issn.1000-7229.2013.08. 011
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]DL/T 5440—2009 重覆冰架空输电线路设计技术规程[S].
[2]GB 50545—2010 110 kV~750 kV架空输电线路设计规范[S].
[3]中国电力工程顾问集团西南电力设计院. 重冰区双回路输电线路研究总报告[R].成都:西南电力设计院,2008.
[4]重庆大学,中国电力工程顾问集团西南电力设计院. 重冰区输电线路脱冰动力响应研究报告[R].重庆:重庆大学,2008.
[5]夏军武,孙东明,董正筑.考虑滑移的空间弹性节点“模糊”精化分析及其在送电线路铁塔中的应用[J].工程力学,2012,29(6):292-299.
[6]李茂华,董建尧,杨靖波,等. 特高压双回路钢管塔真型试验[J].中国电机工程学报,2009,29(34):102-107.
[7]帅群,邓洪洲,李琳,等. 特高压输电钢管塔主材次应力分析[J].建筑结构学报,2012,33(8):109-116.
[8]李茂华,杨靖波,李正良,等. 1000 kV双回路钢管塔次应力的影响因素[J].电网技术,2010,34(2):20-22.
[9]李英梅,赫荣程,刘均. 螺栓滑移对电力塔线结构变形的影响[J].沈阳建筑大学学报:自然科学版,2010,26(5):865-868.
[10]高康,陈海波,王朋,等. 螺栓滑移对非均匀沉降输电塔承载能力的影响初探[J].中国科学技术大学学报,2012,42(12):984-989.
[11]Ungkurapinan N. A study of joint slip in galvanized bolted angle connection[D]. Winnipeg,Manitoba, Canada: University of Manitoba,2000.
[12]Ungkurapinan N, Chandrakeerthi R, Rajapakse R K N D, et al. Joint slip in electrical transmission towers[J]. Engineering Structures,2003,25(6):779-788.
[13]Ahmed K I E, Rajapakse R K N D, Gadala M S. Influence of bolted-joint Slippage on the response of transmission towers subjected to frost-heave[J]. Advances in Structural Engineering, 2009,12(1):1-17.
[14]Jiang W Q, Wang Z Q, McClure G, et al. Accurate modeling of joint effects in lattice transmission towers[J]. Engineering Structures, 2011,33:1817-1827.
[15]徐建设,陈以一,韩琳,等. 普通螺栓和承压型高强螺栓抗剪连接滑移过程[J]. 同济大学学报,2003,31(5):510-514.
[16]ASCE10-97(2000). Design of Latticed Steel Transmission Structure[S].ASCE,2000.
[17]赵滇生.输电塔架结构的理论分析与受力性能研究[D].杭州:浙江大学,2003.
[18]江文强.构造节点的精细模拟及其在输电铁塔结构分析中的应用[D].北京:华北电力大学,2011.
[19]陈建稳,袁广林,刘涛,等.数值模型对输电铁塔内力和变形的影响分析[J].山东科技大学学报: 自然科学版,2009,28(1):40-45.
基金
国家电网公司依托工程基建新技术研究项目(50-S342S)。